\qquad
\qquad Block \qquad

4.1 Exponential Functions, Growth, and Decay

Tell whether the function shows growth or decay

1. $f(x)=\left(\frac{1}{4}\right)^{x}$
2. $f(x)=\frac{1}{5}(0.2)^{x}$
3. $f(x)=14(1.4)^{x}$
4. $f(x)=6.4\left(\frac{3}{8}\right)^{x}$
5. Suppose that the number of bacteria in a culture was 1000 on Monday and the number has been increasing at a rate of 50% per day since then.
a. Write a function representing the growth of the culture per day.
b. Predict the number of bacteria in the culture the following Monday.

4.2 Inverses of Relations and functions

Graph each function. Then write and graph its inverse
6. $f(x)=x+2.1$

8. $f(x)=5 x+4$

7. $f(x)=\frac{3}{4}-x$

9. $f(x)=.4\left(\frac{x}{4}+1.5\right)$

4.3 Logarithmic Functions

Write the exponential equation in logarithmic form.
10. $3^{2}=9$
11. $17.6^{0}=1$
12. $2^{-2}=\frac{1}{4}$
13. $0.5^{x}=0.0625$

Write each logarithmic equation in exponential form.
14. $\log _{4} 64=3$
15. $\log _{\frac{1}{5}} 25=-2$
16. $\log _{0.99} 1=0$
17. $\log _{e} x=5$
18. Use the given x-values to graph $f(x)=\left(\frac{5}{6}\right)^{x} ; x=-1,0,1,2,3$. Then graph the inverse function.

4.4 Properties of Logarithms

Express as a single logarithm. Simplify if possible.
19. $\log _{3} 81+\log _{3} 9$
20. $\log _{\frac{1}{5}} 25+\log _{\frac{1}{5}} 5$
21. $\log _{1.2} 2.16-\log _{1.2} 1.5$

Simplify each expression.
22. $\log _{4} 256^{2}$
23. $\log _{7} 343$
24. $17^{\log _{17} 0.73}$

Evaluate
25. $\log _{27} 243$
26. $\log _{10} 0.01$
27. $\log _{5} 625$

