\qquad

Tell whether each function shows growth or decay.

1. $f(x)=.5(1.25)^{x}$
2. $f(x)=\frac{5}{2}\left(\frac{1}{4}\right)^{x}$

Write each exponential expression in logarithmic form and each logarithmic expression in exponential form.
3. $3^{5}=243$
4. $\log _{2} 16=4$
5. $\left(\frac{1}{3}\right)^{-3}=27$
6. $2=\log 100$

Evaluate each.
7. $\log _{12} 144$
8. $\log _{14} \frac{1}{14}$
9. $\log .01$
10. $\log _{5} 1$
11. Graph $f(x)=\left(\frac{1}{2}\right)^{x}$ and $f^{-1}(x)$ on the same axes. State the domain and range of each.

Express as a single logarithm and simplify.
12. $\log _{2} 128-\log _{2} 4$
13. $\log 50+\log 2$
14. $\log 10^{5}+\log 10^{4}$
15. $\log _{3} 81^{5}$

Use the change of base formula to evaluate each.
16. $\log _{125} 625$
17. $\log _{27} 9$
18. $\log _{64} \frac{1}{4}$

Solve each equation. Check for extraneous solutions.
19. $16^{x}=2^{x+2}$
20. $27^{x-2}=81$
21. $\log _{3}(x+4)=3$
22. $\log _{5} x^{2}=2$
23. $\log _{4} 100-\log _{4}(x+1)=1$
24. $\log _{12} x+\log _{12}(x+1)=1$

Simplify each.
25. $\ln e^{3 t}$
26. $e^{\ln (x+4 y)}$
27. $\ln e^{5}+\ln e^{2}$
28. $\mathrm{e}^{\ln 3}+e^{\ln 2}$

Describe how the graph of each is transformed from its parent function.
29. $k(x)=4\left(-\frac{1}{2}\right)^{x-3}$
30. $m(x)=-\frac{2}{3}(x+5)^{2}-2$
31. $a(x)=\ln (-x+4)$
32. Graph the exponential function, $g(x)=-2^{x}+1$. State the equation of the asymptote and the transformations of the parent function.

Name

Calculator Part
33. Write the equation of the inverse of $f(x)=\frac{1}{2} x-3$. Check your answer by graphing.
34. Graph $g(x)=-\ln (x+2)$. State the equation of the asymptote and the transformations of the parent function.

Solve each equation.
35. $3^{2 x}=5$
36. $10=\ln 3^{x}$
37. $e^{x+2}=3$
38. Use the change of base formula to evaluate $\log _{5} 40$.
39. What is the total value of an investment of $\$ 5000$ that earned 6% interest compounded continuously for 5 years?
40. A car purchased for $\$ 13,500$ will depreciate in value at a rate of approximately 15% each year. Write an exponential function to model the situation. Using logarithms to solve the equation, determine how long after the purchase will the car be worth $\$ 3000$.
41. Carbon-14 is a useful dating tool for specimens between 500 and 25,000 years old, such as ancient manuscripts and artifacts. Carabon-14's half-life is 5730 years.
a. Use $\frac{1}{2}=e^{-k t}$ to find the decay constant, k , for carbon-14.
b. Use the natural decay function, $N(t)=N_{0} e^{-k t}$, to determine how much of 10 grams of carbon14 will remain after 1000 years.
42. Use logarithmic regression to find a function that models the increase in the number of pepper trees in a wilderness reserve over six years. Predict the year when the number of trees will reach 70.

Year	1	2	3	4	5	6
Trees	14	30	40	46	53	55

43. Use exponential regression to find a function that models the data. When will the number of telecommuters exceed 75 million?

Years After 1990	0	1	2	3	4	5	6	7	8	9	10
Telecommuters (millions)	4.4	5.5	6.6	7.3	9.1	8.5	8.7	11.1	15.7	19.6	23.6

