Encryption Using Matrices

Cryptography, the science of encrypting and deciphering messages written in secret codes, has played a vital role in securing information since ancient times. Julius Caesar employed what has become known as the Caesar Shift Cipher when encoding messages to communicate with his generals. Under this form of encryption technique, each letter in a message is substituted with the letter that was a certain number of places further down the alphabet. Caesar used a shift of three places, and so A is replaced by D, B is replaced by E, and so on. In modern history, the Nazis continued to use the presumably highly sophisticated Engima machine to encrypt their messages when they communicated, still unaware that three Polish mathematicians had already cracked the 'unbreakable codes' of the Engima machine and had provided the Allied Forces with the means to gain access to their top secrets. More recently, with millions of financial transactions conducted over the Internet daily, cryptography has become more important than ever.

Companies have begun to make online transactions more secure by installing encryption software to prevent sensitive information such as credit card numbers from falling into the wrong hands by utilizing unique properties of large prime numbers.

In this project you will build a matrix and its inverse and describe how the matrix can be used to encrypt a message in a step by step guide that would be given to someone 'in the field'. Your goal is to explain the process in such a way as to make it very easy to understand for someone wishing to utilize this same technique and to communicate with another person via this code.

The Project

Using whatever medium you would like (make a pamphlet, book, poster, etc.) make a content accurate, visually appeasing product that accomplishes the following:

- 1.) Describes in detail the process needed to take a message and encode that message using a matrix. (can use either a 2x2 or 3x3 matrix)
- 2.) Describes in detail the process needed to take an encrypted message and decode that message using inverse matrices. (can use either a 2x2 or 3x3 matrix)
- 3.) Uses extensive examples to demonstrate the techniques.
- 4.) Includes two practice exercise with solutions provided.

Grading Rubric

Projects will be graded as a quiz on the following criteria

	5 points	4 points	3 points	2 points	0 Points
Encoding	Explanation is	Explanation is	Explanation is	Explanation of	No Encoding
Explained	thorough and	accurate and	accurate but does	Encoding is	Explained
	does and excellent	provides a good	not do a good job	inaccurate	
	job explaining the	overview of	explaining the		
	process for	encoding	process of		
	encoding		encoding		
Decoding	Explanation is	Explanation is	Explanation is	Explanation of	No Decoding
Explained	thorough and	accurate and	accurate but does	Decoding is	Explained
	does and excellent	provides a good	not do a good job	inaccurate	
	job explaining the	overview of	explaining the		
	process for	decoding	process of		
	decoding		decoding		
Examples	Examples are well	Examples are	Some examples	Some Examples	No examples
included	thought out,	given and fit the	are included but	are included but	given
	developed and fit	explanation	may not be well	are inaccurate	
	the explanation		thought out or fit		
	perfectly		explanations		
Practice	2 practice exercise	2 practice	1 practice	1 practice	No Practice
exercises	included with	exercise included	exercise included	exercise included	exercises
	initial matrix given	with initial matrix	with initial matrix	with initial matrix	
	and solutions well	given and	given and	given and	
	explained	solutions,	solutions well	solutions,	
		explanation	explained	explanation	
		lacking		lacking or	
				practice exercises	
				are innacurate	
Visual Product	Visually draws	Visually draws	Visual is clean	Some effort is	No effort to
and creativity	attention and the	attention, clean	and legible	given to produce	produce a visual
	layout adds to the	and legible,		a visual product	presentation
	content	creative			given
	presentation,				
	clean and legible,				
	'piece of art',				
	creative				
Totals					
				Total	
				X4	
				Final Score	